Steps to Convert a Pytorch model to ONNX Format
Question: How do you Convert a Pytorch model to ONNX Format?
Steps to Convert a Pytorch model to ONNX Format
Edited Version 2
Here are the steps to convert a PyTorch model to ONNX format
1. Install the required packages
bash
pip install torch
pip install onnx
2. Load your PyTorch model using the `torch.load()` function
python
import torch
from torch import nn
model = nn.Sequential(
nn.Linear(784, 10),
nn.ReLU(),
nn.Softmax(dim=1)
)
torch.save(model.state_dict(), 'model.pth')
3. Load the saved PyTorch model using the `torch.load()` function
python
import torch
from torch import nn
model = nn.Sequential(
nn.Linear(784, 10),
nn.ReLU(),
nn.Softmax(dim=1)
)
torch.load('model.pth', map_location='cpu')
4. Convert the PyTorch model to ONNX format using the `torch.onnx.convert()` function
python
import torch
from torch import nn
from torch.onnx import convert
model = nn.Sequential(
nn.Linear(784, 10),
nn.ReLU(),
nn.Softmax(dim=1)
)
torch.save('model.pth')
model_onnx = convert(model, torch.onnx.InferenceMode())
torch.save('model_onnx.onnx', model_onnx)
5. Verify the conversion by loading the ONNX model using the `onnxruntime.InferSession()` function
python
import onnxruntime as rt
session = rt.InferSession('model_onnx.onnx')
input_data = np.array([[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]])
output = session.run(None, {'input'
input_data})
print(output)
This should output the predicted class probabilities for the given input data.