Graph Representations for Higher-Order Logic and Theorem Proving
This paper presents the first use of graph neural networks (GNNs) for
higher-order proof search and demonstrates that GNNs can improve upon
state-of-the-art results in this domain. Interactive, higher-order theorem
provers allow for the formalization of most mathematical theories and have been
shown to pose a significant challenge for deep learning. Higher-order logic is
highly expressive and, even though it is well-structured with a clearly defined
grammar and semantics, there still remains no well-established method to
convert formulas into graph-based representations. In this paper, we consider
several graphical representations of higher-order logic and evaluate them
against the HOList benchmark for higher-order theorem proving.
Back
Read News